
HOMEWORK 9

Due date: Next Monday

Exercise:1, (a), (d); 2 (2); 3; 4; 7; page 134;
Exercises: 1, 3, 8, page 139;

Comment: Let F be a field and K ⊂ F be a subfield (some examples: K = Q, F = R; K =

R, F = C; K = Q, F =
{
a+ bα+ cα2 : α = 3

√
2, a, b, c ∈ Q

}
;). Let f, g ∈ K[x] be two polynomials,

and we can compute gcdK(f, g) the greatest common divisor of f and g as elements in K[x]. On the
other hand, f, g ∈ F [x] since K ⊂ F . Thus we can also compute gcdF (f, g), the greatest common
divisor of f and g when they are viewed as elements in F [x]. Exercise 7, page 134 shows that

gcdK(f, g) = gcdF (f, g).

Please keep in mind this assertion. We will need this result later in this course.

Problem 1. Try to find an irreducible polynomial of degree 2 and an irreducible polynomial of degree
3 in F2[x] and in F3[x]. How do you know they are irreducible? Justify your answer.

Problem 2. Let F be a field and K ⊂ F be a subfield. Then F can be viewed as a vector space over
K. We have seen many examples like this in class and in previous HW. We assume that dimK F = 2
and F is algebraically closed. One such example is K = R and F = C.

(1) For any α ∈ F , show that there exists a monic quadratic polynomial f ∈ K[x] such that
f(α) = 0.

(2) Show that any polynomial g ∈ K[x] with deg(g) ≥ 3 is reducible. In particular, any g ∈ R[x]
with deg(g) ≥ 3 is reducible.

Comment: Given an algebraically closed field F (like C), for any positive integer n, you might be
wondering if there is a subfield K such that dimK F = n? In the example when F = C and n = 2,
we know there is such a field K (which is R) such that dimK F = 2. How about general n? It seems
that there is no familiar K ⊂ C such that dimK C = 3 or 4 or any other positive integer. Actually,
this is a general theorem. Namely, if K is a subfield of F with F algebraically closed and if dimK F
is finite, then dimK F = 2.

Comment: The fact “A polynomial g ∈ R[x] with deg(g) ≥ 3 must be reducible” is useful in the
calculation of integrals of real rational functions (or fractions of real polynomials) in calculus class,
where this fact is usually just assumed. Here you can give a proof on your own.

Problem 3. Consider the polynomial f = x4 + 1 ∈ R[x]. We know that f is reducible by the above
problem because it has degree 4. Factorize f into product of irreducible polynomials in R[x].

Hint: There are many ways to do this. One way is to mimic the proof of the above problem. But
to do so you need to know how to solve x4 + 1 = 0 over C.

The following Theorem is a very useful criterion to show a polynomial in Q[x] is irreducible over
Q.

Theorem 0.1 (Eisenstein criterion). Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial
with ai ∈ Z. Suppose that there is a prime number p such that all of the following 3 conditions are
satisfied:

(1) p divides ai for each 0 ≤ i < n;
(2) p does not divide an;
(3) p2 does not divide a0.

Then f(x) is irreducible in Q[x].
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For example, f(x) = 3x4 + 15x + 10 is indeed irreducible in Q[x] because Eisenstein criterion is
applicable here with p = 5: 5 is prime; 5 divides 10, 15 and 0 (0 is the coefficient of x2 and also x3);
5 does not divide 3 (coefficient of x4); and 52 does not divide 10.

Another Example: We can use the above theorem to show

f(x) = x4 + x3 + x2 + x+ 1

is irreducible in Q[x].
We cannot use Eisenstein criterion to f(x) directly. Instead, we use Eisenstein criterion to f(x+1).

To simplify f(x+1), note that f(x) = x5−1
x−1 . Thus f(x+1) = (x+1)5−1

x , which can be easily simplified
using binomial theorem. It is easy to see that 5 satisfies the condition given in the above theorem.
Thus f(x + 1) is irreducible, which implies that f(x) is irreducible. The following problem is a
generalization of the above example. Using Eisenstein criterion, do the following problem

Problem 4. Let p be a prime integer. Then the polynomial

Φp = 1 + x+ x2 + x3 + · · ·+ xp−1

is irreducible over Q.

The polynomial Φp is called the p-th cyclotomic polynomial. It is an important object to study
in number theory.

The proof of Eisenstein criterion will be given in a later course. You can use it in HW and even
in exam if you think it is helpful. Its proof is not hard at all.

Problem 5. Consider the polynomial p = x3 − 2 ∈ Q[x].

(1) Show that p is irreducible. (You can use Eisenstein criterion).
(2) Let α ∈ C be a root of p. Consider the set Q[α] :=

{
a+ bα+ cα2 : a, b, c ∈ Q

}
. Show

that the map θ : Q[x]/pQ[x] → Q[α] defined by θ(f) = f(α) is well-defined, bijective, and
satisfying

θ(cf + g) = cθ(f) + θ(g), θ(fg) = θ(f)θ(g),∀c ∈ Q, f , g ∈ Q[x]/pQ[x].

(3) Conclude that Q[α] is indeed a field.
(4) Let β ∈ C and β ̸= α be another root of p. Show that Q[β] =

{
a+ bβ + cβ2 : a, b, c ∈ Q

}
is

also a field and there is a bijective map Q[α] → Q[β] which preserves addition and multipli-
cation.

1. Derivatives, continued

Let F : Rn → Rm be a map and a ∈ Rn. We have defined the derivative D(F )|a of F at a. It is
a linear map Rn → Rm such that

(1.1) lim
h→0

|F (a+ h)− F (a)−D(F )|a(h)|
|h|

= 0.

Problem 6 (Chain rule). Given functions F : Rn → Rm, G : Rm → Rk and a ∈ Rn. Assume that
F is differentiable at a and G is differentiable at F (a). Show that G ◦F (the composition of G with
F ) is differentiable at a and

D(G ◦ F )|F (a) = D(G)|F (a) ◦D(F )|a.

Problem 7. Let f : Rn → R be a function differentiable at a = (a1, . . . , an) ∈ Rn. Consider its
derivative D(f)|a ∈ Mat1×n(R) viewed as a 1× n matrix. Write D(f)|a = (D1(f)|a, . . . , Dn(f)|a).
Namely, Di(f)|a is the i-th component of D(f)|a. Show that the following limit

∂f

∂xi

∣∣∣∣
a

:= lim
h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a)

h

exists and

Di(f)|a =
∂f

∂xi

∣∣∣∣
a

.
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Hint: Consider the function Gi : R → Rn defined by Gi(x) = (a1, . . . , ai−1, ai + x, ai+1, . . . , an)
and the composition f ◦Gi : R → R. Then apply the above chain rule. Keep in mind, an element in
Rn is viewed as a column vector when we do matrix multiplication.

Problem 8. Let F : Rn → Rm be a function. Note that the image of F is in Rm and thus F is of
the form

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xm)),

for some fi : Rn → R. Let a ∈ Rn and assume that F is differentiable at a. Show that fi is
differentiable and

D(F )|a = (D(f1)|a, . . . , D(fm)|a)t.
Here t denotes transpose. It follows that

D(F )|a =



∂f1
∂x1

∣∣∣
a

∂f1
∂x2

∣∣∣
a

. . . ∂f1
∂xn

∣∣∣
a

∂f2
∂x1

∣∣∣
a

∂f2
∂x2

∣∣∣
a

. . . ∂f2
∂xn

∣∣∣
a

...
... . . .

...
∂fm
∂x1

∣∣∣
a

∂fm
∂x2

∣∣∣
a

. . . ∂fm
∂xn

∣∣∣
a

 .

The right hand side matrix in the above formula is usually written as (∂fi/∂xj)|a. Thus D(F )|a =
(∂fi/∂xj)|a. For the proof, consider the map πi : Rm → R defined by πi(x1, . . . , xm) = xi. Then
fi = πi◦F. ComputeD(πi) and apply chain rule. Note that we don’t know whether F is differentiable
or not if the matrix (∂fi/∂xj)|a exists. All we know so far is: if D(F )|a exists, then (∂fi/∂xj)|a and
D(F )|a = (∂fi/∂xj)|a.

Problem 9. (1) Let f : R2 → R be the function f(x, y) = sin(x+ y). Compute ∂f/∂x|(x,y) and
∂f/∂y|(x,y). Moreover, show that f is differentiable at any point (x, y) ∈ R2 and compute
D(f)|(x,y).

(2) Let F : R2 → R2 be the function defined by F (x, y) = (exy, sin(x + y)). Show that F is
differentiable at any point (x, y) ∈ R2 and compute D(F )|(x,y).
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